Interaction of Variable Fluid Properties with Electrokinetically Modulated Peristaltic Flow of Reactive Nanofluid: A Thermodynamical Analysis

Author:

Akbar YasirORCID,Huang ShipingORCID,Alotaibi HammadORCID

Abstract

In the present study, the interaction of variable fluid properties with electrokinetically regulated peristaltic transportation of a reactive nanofluid embedded in a porous space is studied. The nanofluid saturates the porous space/medium with inhomogeneous porosity, which changes with distance from the channel boundary. It is assumed that nanofluids are accompanied by variable thermal conductivity and viscosity. The impacts of magnetic field, Brownian motion, electric field, viscous dissipation, chemical reaction, mixed convection, and thermophoresis are incorporated. Moreover, the contribution of zero mass flux boundary condition is executed. The complexity of the equations describing the flow of a nanofluid is reduced by applying the lubrication theory. The fully non-linear equations are solved by utilizing a numerical technique. Particular attention is paid to the analysis of entropy optimization, since its minimization is the best measure to enhance the efficiency of thermal systems. These results demonstrate that a positively oriented external electric field contributes to an increase in nanofluid velocity. Temperature of nanofluid increases more rapidly due to an augmentation in Joule heating parameter. It is noticed that the temperature of water is comparatively lower than that of kerosene. The system’s energy loss can be reduced when the thermal conductivity parameter enhance. The magnitude of Bejan number is enhanced by increasing electroosmotic parameter. Further, a substantial decrement in concentration profile is perceived when the Schmidt number is augmented.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference31 articles.

1. Latham, T.W. (1966). Fluid Motions in a Peristaltic Pump. [Master’s Thesis, Massachusetts Institute of Technology].

2. Peristaltic pumping with long wavelengths at low Reynolds number;J. Fluid Mech.,1969

3. The influence of slip conditions, wall properties and heat transfer on MHD peristaltic transport;Comput. Phys. Commun.,2009

4. Study of peristaltic flow of magnetohydrodynamics Walter’s B fluid with slip and heat transfer;Sci. Iran.,2016

5. Theoretical investigation of peristaltic activity in MHD based blood flow of non-Newtonian material;Comput. Methods Programs Biomed.,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3