Mechanistic Analysis of Hydrogen Evolution Reaction on Stationary Polycrystalline Gold Electrodes in H2SO4 Solutions

Author:

Ghelichkhah Zahed1ORCID,Macdonald Digby D.2ORCID,Ferguson Gregory S.1

Affiliation:

1. Departments of Chemistry and Materials Science & Engineering, Lehigh University, Bethlehem, PA 18015, USA

2. Departments of Nuclear Engineering and Materials Science and Engineering, University of California at Berkeley, Berkeley, CA 94720, USA

Abstract

An impedance model based on the Volmer–Heyrovsky–Tafel mechanism was developed to study the kinetics of the hydrogen evolution reaction on polycrystalline gold electrodes at moderate overpotentials in aqueous H2SO4 (0.5 and 1.0 M) solutions. The model was optimized on data from potentiodynamic polarization and electrochemical impedance spectroscopy, and model parameters were extracted. Consistent with expectations, the magnitude of the impedance data indicated a higher rate of hydrogen evolution at lower pH. Also, the fractional surface coverage of adsorbed hydrogen (θHads) increases with increasing overpotential but the small value of θHads indicates only weak adsorption of H on gold. Tafel slopes and exchange current densities were estimated to be in the range of 81–124 mV/dec, and 10−6 and 10−5 A/cm2 in H2SO4 (0.5 and 1.0 M), respectively. The results show that the model accounts well for the experimental data, such as the steady-state current density. Sensitivity analysis reveals that the electrochemical parameters (α1, α2, k10, k−10, and k20) associated with the kinetics of the hydrogen evolution reaction have a major impact on the calculated impedance but the standard rate constant for hydrogen oxidation reaction (k−20) does not strongly affect the calculated impedance.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3