cRGD-Conjugated GdIO Nanoclusters for the Theranostics of Pancreatic Cancer through the Combination of T1–T2 Dual-Modal MRI and DTX Delivery

Author:

Wang Shengchao1ORCID,Qi Guiqiang1,Zhang Zhichen1,Yin Qiangqiang1,Li Na2,Li Zhongtao1,Shi Guangyue1,Hu Haifeng3,Hao Liguo1ORCID

Affiliation:

1. Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar 161006, China

2. Department of Imaging Medicine and Nuclear Medicine, School of Clinical Medicine, Jiamusi University, Jiamusi 154002, China

3. Medical Imaging Center, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, China

Abstract

Clinically, magnetic resonance imaging (MRI) often uses contrast agents (CAs) to improve image contrast, but single-signal MRI CAs are often susceptible to calcification, hemorrhage, and magnetic sensitivity. Herein, iron acetylacetone and gadolinium acetylacetone were used as raw materials to synthesize a T1–T2 dual-mode imaging gadolinium-doped iron oxide (GdIO) nanocluster. Moreover, to endow the nanoclusters with targeting properties and achieve antitumor effects, the cyclic Arg-Gly-Asp (cRGD) peptide and docetaxel (DTX) were attached to the nanocluster surface, and the efficacy of the decorated nanoclusters against pancreatic cancer was evaluated. The final synthesized material cRGD-GdIO-DTX actively targeted αvβ3 on the surface of Panc-1 pancreatic cancer cells. Compared with conventional passive targeting, the enrichment of cRGD-GdIO-DTX in tumor tissues improved, and the diagnostic accuracy was significantly enhanced. Moreover, the acidic tumor microenvironment triggered the release of DTX from cRGD-GdIO-DTX, thus achieving tumor treatment. The inhibition of the proliferation of SW1990 and Panc-1 pancreatic cancer cells by cRGD-GdIO-DTX was much stronger than that by the untargeted GdIO-DTX and free DTX in vitro. In addition, in a human pancreatic cancer xenograft model, cRGD-GdIO-DTX considerably slowed tumor development and demonstrated excellent magnetic resonance enhancement. Our results suggest that cRGD-GdIO-DTX has potential applications for the precise diagnosis and efficient treatment of pancreatic cancer.

Funder

The Health Commission of Heilongjiang Province

The Qiqihar Medical University Postgraduate Innovation Fund Project

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3