Metabolite Variations during the First Weeks of Growth of Immature Citrus sinensis and Citrus reticulata by Untargeted Liquid Chromatography–Mass Spectrometry/Mass Spectrometry Metabolomics
-
Published:2024-08-06
Issue:16
Volume:29
Page:3718
-
ISSN:1420-3049
-
Container-title:Molecules
-
language:en
-
Short-container-title:Molecules
Author:
Deschamps Estelle1ORCID, Durand-Hulak Marie23, Castagnos Denis4, Hubert-Roux Marie1, Schmitz Isabelle1, Froelicher Yann3, Afonso Carlos1ORCID
Affiliation:
1. Institut National des Sciences Appliquées (INSA) Rouen Normandie, Univ Rouen Normandie, Centre National de la Recherche Scientifique (CNRS), Normandie Univ, Chimie Organique et Bioorganique Réactivité et Analyse (COBRA) UMR 6014, INC3M FR 3038, 76000 Rouen, France 2. EARL DURAND Olivier, Domaine de la Triballe, 34820 Guzargues, France 3. Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR AGAP Institut, Station INRAE, 20230 San Giuliano, France 4. ORIL Industrie, Servier Group, 13 r Auguste Desgenétais, 76210 Bolbec, France
Abstract
Immature citruses are an important resource for the pharmaceutical industry due to their high levels of metabolites with health benefits. In this study, we used untargeted liquid chromatography–mass spectrometry (LC-MS) metabolomics to investigate the changes associated with fruit size in immature citrus fruits in the first weeks of growth. Three orange cultivars (Citrus sinensis ‘Navel’, Citrus sinensis ‘Valencia’, and Citrus sinensis ‘Valencia Late’) and a mandarin (Citrus reticulata Blanco ‘Fremont’) were separated into eight fruit sizes, extracted, and analyzed. Statistical analyses revealed a distinct separation between the mandarin and the oranges based on 56 metabolites, with an additional separation between the ‘Navel’ orange and the ‘Valencia’ and ‘Valencia Late’ oranges based on 21 metabolites. Then, metabolites that evolved significantly with fruit size growth were identified, including 40 up-regulated and 31 down-regulated metabolites. This study provides new insights into the metabolite modifications of immature Citrus sinensis and Citrus reticulata in the first weeks of growth and emphasizes the significance of including early sampled fruits in citrus maturation studies.
Funder
INSA Rouen Normandie, Normandie Université the center National de la Recherche Scientifique Université de Rouen Normandie Labex SynOrg the graduate school for research XL–Chem European Regional Development Fund France Relance CNRS research infrastructure Infranalytics
Reference45 articles.
1. Saini, R.K., Ranjit, A., Sharma, K., Prasad, P., Shang, X., Gowda, K.G.M., and Keum, Y.-S. (2022). Bioactive Compounds of Citrus Fruits: A Review of Composition and Health Benefits of Carotenoids, Flavonoids, Limonoids, and Terpenes. Antioxidants, 11. 2. Favela-Hernández, J.M.J., González-Santiago, O., Ramírez-Cabrera, M.A., Esquivel-Ferriño, P.C., and Camacho-Corona, M.D.R. (2016). Chemistry and Pharmacology of Citrus sinensis. Molecules, 21. 3. Shorbagi, M., Fayek, N.M., Shao, P., and Farag, M.A. (2022). Citrus reticulata Blanco (the Common Mandarin) Fruit: An Updated Review of Its Bioactive, Extraction Types, Food Quality, Therapeutic Merits, and Bio-Waste Valorization Practices to Maximize Its Economic Value. Food Biosci., 47. 4. Liu, S., Lou, Y., Li, Y., Zhang, J., Li, P., Yang, B., and Gu, Q. (2022). Review of Phytochemical and Nuritional Characteristics and Food Applications of Citrus L. Fruits. Front. Nutr., 9. 5. Physiology of Citrus Fruiting;Iglesias;J. Plant Physiol.,2007
|
|