A Novel Vermiculite/TiO2 Composite: Synergistic Mechanism of Enhanced Photocatalysis towards Organic Pollutant Removal

Author:

Han Lin12,Yue Xiaoju12,Wen Liying12,Zhang Mingqing12,Wang Shifeng1234ORCID

Affiliation:

1. Innovation Laboratory of Materials for Energy and Environment Technologies, Institute of Oxygen Supply, College of Science, Tibet University, Lhasa 850000, China

2. Key Laboratory of Cosmic Rays (Tibet University), Ministry of Education, Lhasa 850000, China

3. Fujian Quanzhou Peninsula Materials Co., Ltd., Quanzhou 362000, China

4. Aimoli (Hebei) Technology Co., Ltd., Shijiazhuang 050000, China

Abstract

There has been increasing concern over water pollution, which poses a threat to human life and health. Absorption by low-cost absorbents is considered to be a cost-effective and efficient route. However, the non-reusability of absorbents greatly limits their applications. In this study, a novel vermiculite/TiO2 composite combining the inexpensive absorbent with the commonly used photocatalyst was firstly synthesized via the sol-gel method. On the one hand, the organic pollutants are absorbed by vermiculite and then decomposed through the photocatalysis process, enabling the next round of absorption and creating an absorption–decomposition reusable cycle. On the other hand, the modulation effect of optical and electronic structure on the prepared TiO2 photocatalyst by the vermiculite incorporation could significantly improve the photocatalytic activity and eventually enhance the aforementioned cyclic degradation capacity. The layer-structured vermiculite (Vt) supports a uniform coverage of TiO2 at an optimized ratio, providing an optimal adsorption environment and contact area between the photocatalyst and methylene blue (MB) molecules. Vt/TiO2 heterojunction is formed with Si-O-Ti bonding, at which electrons transfer from Vt to TiO2, enriching electron density in TiO2 and favoring its photocatalytic activity. Furthermore, the incorporation of Vt increases the light absorption of TiO2 in the visible range by narrowing the optical band gap to 1.98 eV, which could promote the generation of photo-excited carriers. In addition, PL measurements revealed that the carrier recombination is substantially suppressed, and the charge separation and migration are greatly enhanced by a factor of 3. As a result, the decomposition rate of MB is substantially increased 5.3-fold, which is ascribed to the synergistic effects of the elevated photocatalysis and the large absorption capacity governed by the chemisorption mechanism of the intra-particle diffusion. These results pave the way for composite design towards efficient, economical, and pragmatic water pollution treatment.

Funder

National Natural Science Foundation of China

Central Government Funds for Local Scientific and Technological Development

Natural Science Foundation of Tibet Autonomous Region

Everest Discipline Construction Project of Tibet University

Science and Technology Planning Projects of Lhasa

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3