Bacillus sp. G2112 Detoxifies Phenazine-1-carboxylic Acid by N5 Glucosylation

Author:

Iloabuchi Kenechukwu12ORCID,Spiteller Dieter1ORCID

Affiliation:

1. Department Chemical Ecology/Biological Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany

2. Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria Nsukka, Obukpa Road, Nsukka 410105, Nigeria

Abstract

Microbial symbionts of plants constitute promising sources of biocontrol organisms to fight plant pathogens. Bacillus sp. G2112 and Pseudomonas sp. G124 isolated from cucumber (Cucumis sativus) leaves inhibited the plant pathogens Erwinia and Fusarium. When Bacillus sp. G2112 and Pseudomonas sp. G124 were co-cultivated, a red halo appeared around Bacillus sp. G2112 colonies. Metabolite profiling using liquid chromatography coupled to UV and mass spectrometry revealed that the antibiotic phenazine-1-carboxylic acid (PCA) released by Pseudomonas sp. G124 was transformed by Bacillus sp. G2112 to red pigments. In the presence of PCA (>40 µg/mL), Bacillus sp. G2112 could not grow. However, already-grown Bacillus sp. G2112 (OD600 > 1.0) survived PCA treatment, converting it to red pigments. These pigments were purified by reverse-phase chromatography, and identified by high-resolution mass spectrometry, NMR, and chemical degradation as unprecedented 5N-glucosylated phenazine derivatives: 7-imino-5N-(1′β-D-glucopyranosyl)-5,7-dihydrophenazine-1-carboxylic acid and 3-imino-5N-(1′β-D-glucopyranosyl)-3,5-dihydrophenazine-1-carboxylic acid. 3-imino-5N-(1′β-D-glucopyranosyl)-3,5-dihydrophenazine-1-carboxylic acid did not inhibit Bacillus sp. G2112, proving that the observed modification constitutes a resistance mechanism. The coexistence of microorganisms—especially under natural/field conditions—calls for such adaptations, such as PCA inactivation, but these can weaken the potential of the producing organism against pathogens and should be considered during the development of biocontrol strategies.

Funder

GSC 218 Konstanz Research School Chemical Biology by the Deutsche Forschungsgemeinschaft

Tertiary Education Trustfund Nigeria

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference101 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3