Computational Insights into Novel Inhibitor N-(3-(tert-Butylcarbamoyl)-4-methoxyphenyl)-indole and Ingliforib Specific against GP Isoenzyme Dimers Interaction Mechanism

Author:

Wang Youde1ORCID,Li Shuai1,Yan Zhiwei1,Zhang Liying1

Affiliation:

1. Laboratory of Traditional Chinese Medicine Research and Development of Hebei Province, Institute of Traditional Chinese Medicine, Chengde Medical University, Chengde 067000, China

Abstract

The high conservation of the three subtypes of glycogen phosphorylase (GP) presents significant challenges for specific inhibitor studies targeting GP. Our prior screening revealed that compound 1 exhibited unequal inhibitory activity against the three GP subtypes, with a noticeable effect against brain GP (PYGB). The commercially available ingliforib demonstrated potent inhibitory activity specifically against liver GP (PYGL). To guide the further design and screening of high-specificity inhibitors, the possible reasons for the differential inhibitory activity of two compounds against different GP subtypes were analyzed, with ingliforib as a reference, through molecular docking and molecular dynamics simulations. Initially, the study predicted the binding modes of ligands with the three GP receptor subtypes using molecular docking. Subsequently, this was validated by molecular dynamics experiments, and possible amino acid residues that had important interactions were explored. The strong correlation between the calculated interaction free energies and experimental inhibitory activity implied the reasonable binding conformations of the compounds. These findings offer insight into the different inhibitory activity of compound 1 and ingliforib against all three GP subtypes and provide guidance for the design of specific target molecules that regulate subtype selectivity.

Funder

Natural Science Foundation of Hebei Province

Hebei Provincial Department of Science and Technology

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3