Evaluation of [68Ga]Ga-DOTA-TCTP-1 for the Detection of Metalloproteinase 2/9 Expression in Mouse Atherosclerotic Plaques

Author:

Kiugel Max,Hellberg Sanna,Käkelä Meeri,Liljenbäck Heidi,Saanijoki Tiina,Li Xiang-Guo,Tuomela Johanna,Knuuti Juhani,Saraste Antti,Roivainen AnneORCID

Abstract

Background: The expression of matrix metalloproteinases 2/9 (MMP-2/9) has been implicated in arterial remodeling and inflammation in atherosclerosis. We evaluated a gallium-68 labeled peptide for the detection of MMP-2/9 in atherosclerotic mouse aorta. Methods: We studied sixteen low-density lipoprotein receptor deficient mice (LDLR-/-ApoB100/100) kept on a Western-type diet. Distribution of intravenously-injected MMP-2/9-targeting peptide, [68Ga]Ga-DOTA-TCTP-1, was studied by combined positron emission tomography (PET) and contrast-enhanced computed tomography (CT). At 60 min post-injection, aortas were cut into cryosections for autoradiography analysis of tracer uptake, histology, and immunohistochemistry. Zymography was used to assess MMP-2/9 activation and pre-treatment with MMP-2/9 inhibitor to assess the specificity of tracer uptake. Results: Tracer uptake was not visible by in vivo PET/CT in the atherosclerotic aorta, but ex vivo autoradiography revealed 1.8 ± 0.34 times higher tracer uptake in atherosclerotic plaques than in normal vessel wall (p = 0.0029). Tracer uptake in plaques correlated strongly with the quantity of Mac-3-positive macrophages (R = 0.91, p < 0.001), but weakly with MMP-9 staining (R = 0.40, p = 0.099). Zymography showed MMP-2 activation in the aorta, and pre-treatment with MMP-2/9 inhibitor decreased tracer uptake by 55% (p = 0.0020). Conclusions: The MMP-2/9-targeting [68Ga]Ga-DOTA-TCTP-1 shows specific uptake in inflamed atherosclerotic lesions; however, a low target-to-background ratio precluded in vivo vascular imaging. Our results suggest, that the affinity of gelatinase imaging probes should be steered towards activated MMP-2, to reduce the interference of circulating enzymes on the target visualization in vivo.

Funder

Academy of Finland

Sigrid Jusélius Foundation

Finnish Foundation for Cardiovascular Research

Maud Kuistila Memorial Foundation

Emil Aaltonen foundation

Finnish Cultural Foundation

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3