Acridine-Based Antimalarials—From the Very First Synthetic Antimalarial to Recent Developments

Author:

Fonte Mélanie,Tassi Natália,Gomes PaulaORCID,Teixeira CátiaORCID

Abstract

Malaria is among the deadliest infectious diseases in the world caused by Plasmodium parasites. Due to the high complexity of the parasite’s life cycle, we partly depend on antimalarial drugs to fight this disease. However, the emergence of resistance, mainly by Plasmodium falciparum, has dethroned most of the antimalarials developed to date. Given recent reports of resistance to artemisinin combination therapies, first-line treatment currently recommended by the World Health Organization, in Western Cambodia and across the Greater Mekong sub-region, it seems very likely that artemisinin and its derivatives will follow the same path of other antimalarial drugs. Consequently, novel, safe and efficient antimalarial drugs are urgently needed. One fast and low-cost strategy to accelerate antimalarial development is by recycling classical pharmacophores. Quinacrine, an acridine-based compound and the first clinically tested synthetic antimalarial drug with potent blood schizonticide but serious side effects, has attracted attention due to its broad spectrum of biological activity. In this sense, the present review will focus on efforts made in the last 20 years for the development of more efficient, safer and affordable antimalarial compounds, through recycling the classical quinacrine drug.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference60 articles.

1. History of the discovery of the malaria parasites and their vectors

2. World Malaria Report 2019, World Health Organizationhttps://www.who.Int/publications/i/item/world-malaria-report-2019

3. Artemisinin Resistance and Artemisinin-Based Combination Therapy Efficacy: Status Report (2018)https://apps.Who.Int/iris/handle/10665/274362

4. “Recycling” Classical Drugs for Malaria

5. The Activities of Current Antimalarial Drugs on the Life Cycle Stages of Plasmodium: A Comparative Study with Human and Rodent Parasites

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3