The Preparation of N, P-Doped NiSe Nanorod Electrode Materials on Nickel Foam Using the Microwave Method for High-Performance Supercapacitors

Author:

Lu Zhen1ORCID,Kang Hongjie1,Duan Qianwen1,Lv Chao2,Liu Rui1,Feng Feng1ORCID,Zhao Haidong1

Affiliation:

1. School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China

2. School of Coal Engineering, Shanxi Datong University, Datong 037009, China

Abstract

Transition metal selenides have the leading position in the field of energy storage and conversion due to their high theoretical capacity, good electrical conductivity, and cycling stability. Nickel is widely used for the construction of positive electrodes in devices due to its good conductivity, variable valence state, and ideal redox activity. NiSe materials have high internal resistance and are prone to volume change during charging and discharging, thus affecting the practical application of this electrode material, and the reported NiSe materials have not achieved a more desirable capacity value. Therefore, in this study, N, P-NiSe nanoelectrode materials were prepared using nickel foam as the nickel source and hexachlorocyclotriphonitrile as the nitrogen and phosphorus dopant using an efficient, energy-saving, and simple microwave method. It was also characterised by XRD and XPS to confirm the successful preparation of N, P-NiSe materials. In addition, the material yielded a high capacitance value (3184 F g−1) and good cycling stability (72% of the initial capacitance value was retained after 4000 cycles) in electrochemical tests. To demonstrate its excellent suitability for practical applications, an asymmetric supercapacitor was assembled using N, P-NiSe as the anode and activated carbon as the cathode. At an operating voltage of 1.6 V, the device achieved an energy density of 289.06 Wh kg−1 and a power density of 799.26 W kg−1 and retained 80% of its initial capacity after 20,000 cycles.

Funder

Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province

Da Tong Key Research Project of Science and Technology Planning

Key Research and Development Project of Shanxi Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3