Mechanochemical Synthesis and Molecular Docking Studies of New Azines Bearing Indole as Anticancer Agents

Author:

Ibrahim Mohamed1,Farag Basant2,Al-Humaidi Jehan3ORCID,Zaki Magdi4ORCID,Fathalla Maher1,Gomha Sobhi15ORCID

Affiliation:

1. Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia

2. Department of Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt

3. Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

4. Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia

5. Department of Chemistry, Faculty of Science, Cairo University, Cairo 12613, Egypt

Abstract

The development of new approaches for the synthesis of new bioactive heterocyclic derivatives is of the utmost importance for pharmaceutical industry. In this regard, the present study reports the green synthesis of new benzaldazine and ketazine derivatives via the condensation of various carbonyl compounds (aldehydes and ketones with the 3-(1-hydrazineylideneethyl)-1H-indole using the grinding method with one drop of acetic acid). Various spectroscopic techniques were used to identify the structures of the synthesized derivatives. Furthermore, the anticancer activities of the reported azine derivatives were evaluated against colon, hepatocellular, and breast carcinoma cell lines using the MTT technique with doxorubicin as a reference medication. The findings suggested that the synthesized derivatives exhibited potential anti-tumor activities toward different cell lines. For example, 3c, 3d, 3h, 9, and 13 exhibited interesting activity with an IC50 value of 4.27–8.15 µM towards the HCT-116 cell line as compared to doxorubicin (IC50 = 5.23 ± 0.29 µM). In addition, 3c, 3d, 3h, 9, 11, and 13 showed excellent cytotoxic activities (IC50 = 4.09–9.05 µM) towards the HePG-2 cell line compared to doxorubicin (IC50 = 4.50 ± 0.20 µM), and 3d, 3h, 9, and 13 demonstrated high potency (IC50 = 6.19–8.39 µM) towards the breast cell line (MCF-7) as compared to the reference drug (IC50 = 4.17 ± 0.20 µM). The molecular interactions between derivatives 3a-h, 7, 9, 11, 13, and the CDK-5 enzyme (PDB ID: 3IG7) were studied further using molecular docking indicating a high level of support for the experimental results. Furthermore, the drug-likeness analysis of the reported derivatives indicated that derivative 9 (binding affinity = −8.34 kcal/mol) would have a better pharmacokinetics, drug-likeness, and oral bioavailability as compared to doxorubicin (−7.04 kcal/mol). These results along with the structure–activity relationship (SAR) of the reported derivatives will pave the way for the design of additional azines bearing indole with potential anticancer activities.

Funder

Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3