Excited-State Dynamics Leading Either to Triplet Formation or Coordinative Expansion following Photolysis of Cu(II)-Porphyrins: A DFT, TD-DFT, Luminescence and Femtosecond Time-Resolved Absorbance Study

Author:

McGarry Ross J.1,Varvarezos Lazaros2ORCID,Pryce Mary T.1,Long Conor1ORCID

Affiliation:

1. School of Chemical Sciences, Dublin City University, D09 V209 Dublin, Ireland

2. School of Physical Sciences, Dublin City University, D09 V209 Dublin, Ireland

Abstract

The photophysical properties of Cu(II) complexes with 5,10,15,20-meso-tetrakis(phenyl)porphyrin and 5,10,15,20-meso-tetrakis(N-methylpyridium-4-yl)porphyrin are examined via the luminescence and femtosecond time-resolved absorbance methods, respectively. These studies are supported by DFT and TD-DFT calculations, which highlight the important role played by ligand-to-metal charge-transfer states in directing the system toward either intersystem crossing to the triplet hypersurface or coordinative expansion to a five-coordinate quasi-stable intermediate. The latter processes occur when the porphyrin is photolyzed in the presence of suitably located Lewis bases. Femtosecond time-resolved absorbance measurements of Cu(II)-5,10,15,20-meso-tetrakis(N-methylpyridium-4-yl)porphyrin confirm that the coordinative expansion in water occurs in approximately 700 fs, while crossing to the triplet hypersurface takes approximately 140 fs in the same solvent. These processes are mutually exclusive, although both can occur simultaneously depending on the environment of the porphyrin. The ratio of the two processes depends on the relative orientation of the Lewis base with respect to the copper atom at the time of excitation. As a consequence, copper porphyrins such as these are excellent probes in the environment of the porphyrin and can be used to identify the location of the porphyrin when interacting with DNA fragments.

Funder

Science Foundation Ireland

Sustainable Energy Authority of Ireland

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3