Ganoderma lucidum Mycelia Mass and Bioactive Compounds Production through Grape Pomace and Cheese Whey Valorization

Author:

Kachrimanidou Vasiliki1ORCID,Papadaki Aikaterini1ORCID,Papapostolou Harris1ORCID,Alexandri Maria1,Gonou-Zagou Zacharoula2ORCID,Kopsahelis Nikolaos1ORCID

Affiliation:

1. Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece

2. Department of Ecology and Systematics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece

Abstract

Numerous compounds obtained from the medicinal mushroom Ganoderma lucidum have evidenced renowned bioactive characteristics. Controlled fermentation to generate fungal mycelia confers several advantages, specifically when the valorization of agro-industrial streams as fermentation feedstocks is included. Submerged fermentation of a newly isolated Greek strain of G. lucidum was performed using conventional synthetic media and, also, grape pomace extract (GPE) and cheese whey permeate (CWP) under static and shaking conditions. Under shaking conditions, maximum biomass with GPE and supplementation with organic nitrogen reached 17.8 g/L. The addition of an elicitor in CWP resulted in a significant improvement in biomass production that exceeded synthetic media. Overall, agitation demonstrated a positive impact on biomass productivity and, therefore, on process optimization. Crude intracellular and extracellular polysaccharides were extracted and evaluated regarding antioxidant activity and polysaccharide and protein content. FTIR analysis confirmed the preliminary chemical characterization of the crude extracts. This study introduces the design of a bioprocessing scenario to utilize food industry by-products as onset feedstocks for fungal bioconversions to obtain potential bioactive molecules within the concept of bioeconomy.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3