Allogeneic Bone Impregnated with Biodegradable Depot Delivery Systems for the Local Treatment of Joint Replacement Infections: An In Vitro Study

Author:

Prokes LiborORCID,Snejdrova EvaORCID,Soukup TomasORCID,Malakova Jana,Frolov Vladislav,Loskot JanORCID,Andrys Rudolf,Kucera TomasORCID

Abstract

Although progress is evident in the effective treatment of joint replacement-related infections, it still remains a serious issue in orthopedics. As an example, the local application of antibiotics-impregnated bone grafts supplies the high drug levels without systemic side effects. However, antibiotics in the powder or solution form could be a risk for local toxicity and do not allow sustained drug release. The present study evaluated the use of an antibiotic gel, a water-in-oil emulsion, and a PLGA microparticulate solid dispersion as depot delivery systems impregnating bone grafts for the treatment of joint replacement-related infections. The results of rheological and bioadhesive tests revealed the suitability of these formulations for the impregnation of bone grafts. Moreover, no negative effect on proliferation and viability of bone marrow mesenchymal stem cells was detected. An ex vivo dissolution test of vancomycin hydrochloride and gentamicin sulphate from the impregnated bone grafts showed a reduced burst and prolonged drug release. The PLGA-based formulation proved to be particularly promising, as one-day burst release drugs was only 15% followed with sustained antibiotics release with zero-order kinetics. The results of this study will be the basis for the development of a new product in the Tissue Section of the University Hospital for the treatment of bone defects and infections of joint replacements.

Funder

MEYS CZ

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Potential for application of hydroxyapatite-based bone grafting materials in spine surgery;Creative surgery and oncology;2023-01-05

2. Biodegradable depot delivery systems for the local treatment of joint replacement infections;V. Symposium of Young Researchers on Pharmaceutical Technology, Biotechnology and Regulatory Science;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3