Affiliation:
1. Department of Environmental Science and Engineering, School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China
Abstract
Magnetic nano-chitosan (MNC) was prepared and characterized. The kinetics, thermodynamics, and influencing factors of the adsorption of Cr6+, Cu2+, Pb2+, and Zn2+, as well as their competitive adsorption onto MNC in aqueous solution, were studied. The results showed that the adsorption kinetics and thermodynamics of Cr6+, Cu2+, Pb2+, and Zn2+ were well described by the pseudo-second-order kinetic model and Langmuir isothermal adsorption model, indicating that the adsorption was mainly chemical adsorption and endothermic. Increasing the dosage of MNC, the equilibrium adsorption capacity (qe) of Cr6+, Cu2+, Pb2+, and Zn2+ decreased; their removal rate (η) increased. With the increase in the solution’s pH, the qe and η of Cr6+ first increased and then decreased; the qe and η of Cu2+, Pb2+, and Zn2+ increased. With the increase in the metal ion initial concentration, the qe increased; the η of Cr6+, Cu2+, and Zn2+ decreased, while the η of Pb2+ increased first and then decreased. Temperature had a weak influence on the qe of Cr6+ and Pb2+, while it had a strong influence on Cu2+ and Zn2+, the qe and η were greater when the temperature was higher, and the adsorption was spontaneous and endothermic. The qe and η of Cu2+, Pb2+, and Zn2+ decreased in the presence of co-existing ions. The influences among metal ions existed in a binary and ternary ion system. The current study’s results provide a theoretical support for the simultaneous treatment of harmful metal ions in wastewater by MNC.
Funder
National Natural Science Foundation of China
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献