Author:
Cao Bo,Huang Xiaodan,Zhang Wenxiang,Wu Peng
Abstract
In this study, a fluorine-containing flow modifier (Si-DF) with low surface energy is successfully synthesized, which is applied to fabricate ideal electronic packaging materials (BN/PPS composites) with high thermal conductivity, excellent dielectric properties, processability, and toughness by conventional melt blending. Si-DPF is located at the interface between the BN fillers and the PPS matrix, which not only improves the dispersion of BN fillers but also strengthens the interaction. With the help of 5 wt% Si-DF, BN/PPS/Si-DF (70/25/5) still exhibits the high thermally conductive coefficient (3.985 W/m·K) and low dielectric constant (3.76 at 100 MHz) although BN fillers are loaded as high as 70 wt%. Moreover, the sample processes a lower stable torque value (2.5 N·m), and the area under the stress–strain curves is also increased. This work provides an efficient way to develop high-performance polymer-based composites with high thermally conductive coefficients and low dielectric constants for electronic packaging applications.
Funder
Guangdong Basic and Applied Basic Research Foundation
Opening Project of Key Laboratory of Polymer Processing Engineering (South China University of Technology), Ministry of Education
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献