Yamogenin-Induced Cell Cycle Arrest, Oxidative Stress, and Apoptosis in Human Ovarian Cancer Cell Line

Author:

Stefanowicz-Hajduk JustynaORCID,Hering AnnaORCID,Gucwa Magdalena,Czerwińska Monika,Ochocka J. RenataORCID

Abstract

Steroidal saponins are a group of compounds with complex structures and biological activities. They have anti-inflammatory, antimicrobial, fungicidal, and antitumor properties. Yamogenin is one of the spirostane saponins and occurs in Trigonella foenum-graecum, Asparagus officinalis, and Dioscorea collettii. It is a stereoisomer of diosgenin—a well-known compound whose activity and mechanisms of action in cancer cells are determined. However, the antitumor effect of yamogenin is still little known, and the mechanism of action has not been determined. In this study, we evaluated the effect of yamogenin on human ovarian cancer SKOV-3 cells in vitro by determining the cellular factors that trigger cell death. The viability of the cells was assessed with a Real-Time xCELLigence system and the cell cycle arrest with flow cytometry. The activity of initiator and executioner caspases (-8, -9, and -3/7) was estimated with luminometry and flow cytometry, respectively. The mitochondrial membrane depolarization, the level of oxidative stress, and DNA damage in the yamogenin-treated cells were also evaluated by flow cytometry. Genes expression analysis at the mRNA level was conducted with Real-Time PCR. Bid activation and chromatin condensation were estimated with fluorescent microscopy. The obtained results indicate that yamogenin has cytotoxic activity in SKOV-3 cells with an IC50 value of 23.90 ± 1.48 µg/mL and strongly inhibits the cell cycle in the sub-G1 phase. The compound also triggers cell death with a significant decrease in mitochondrial membrane potential, an increase in the level of oxidative stress (over two times higher in comparison to the control), and activation of caspase-8, -9, -3/7, as well as Bid. The results of genes expression indicate that the Tumor Necrosis Factor (TNF) Receptor Superfamily Members (TNF, TNFRSF10, TNFRSF10B, TNFRSF1B, and TNFRSF25), Fas Associated via Death Domain (FADD), and Death Effector Domain Containing 2 (DEDD2) were significantly upregulated and their relative expression was at least two times higher than in the control. Our work shows that yamogenin induces apoptosis in ovarian cancer cells, and both the extrinsic and mitochondrial—intrinsic pathways are involved in this process.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3