Ultrasonic-Assisted Extraction of Flavonoids from Juglans mandshurica Maxim.: Artificial Intelligence-Based Optimization, Kinetics Estimation, and Antioxidant Potential

Author:

Chu Guodong,Liang Rui,Wan Chenmeng,Yang Jing,Li Jing,Wang Ruinan,Du Linna,Lin Ruixin

Abstract

Ultrasonic-assisted extraction (UAE) of flavonoids (JMBF) from Juglans mandshurica Maxim., an important industrial crop in China, was investigated in the present study. To improve the extraction efficiency of JMBF, suitable UAE was proposed after optimization using a hybrid response surface methodology–artificial neural network–genetic algorithm approach (RSM–ANN–GA). The maximum extraction yield (6.28 mg·g−1) of JMBF was achieved using the following optimum UAE conditions: ethanol concentration, 62%; solid–liquid ratio, 1:20 g·mL−1; ultrasonic power, 228 W; extraction temperature, 60 °C; extraction time, 40 min; total number of extractions, 1. Through the investigation of extraction kinetics, UAE offered a higher saturated concentration (Cs) for JMBF in comparison to traditional solvent extraction (TSE). Scanning electron microscopy (SEM) images showed that deeper holes were generated in J. mandshurica powder under the action of ultrasound, indicating that ultrasound significantly changed the structure of the plant materials to facilitate the dissolution of active substances. Extracts obtained using UAE and TSE were compared by Fourier-transform infrared spectroscopy analysis, the results of which revealed that the functional group of bioactive compounds in the extract was unaffected by the ultrasonication process. Moreover, JMBF was further shown to exhibit significant antioxidant properties in vitro. This study provides a basis for the application of JMBF as a natural antioxidant.

Funder

Key Projects of Jilin Province Science and Technology Support Program of P.R. China

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3