Albumin-Albumin/Lactosylated Core-Shell Nanoparticles: Therapy to Treat Hepatocellular Carcinoma for Controlled Delivery of Doxorubicin

Author:

Teran-Saavedra Nayelli GuadalupeORCID,Sarabia-Sainz Jose Andrei,Velázquez-Contreras Enrique FernandoORCID,Ramos-Clamont Montfort GabrielaORCID,Pedroza-Montero Martín,Vazquez-Moreno Luz

Abstract

Doxorubicin (Dox) is the most widely used chemotherapeutic agent and is considered a highly powerful and broad-spectrum for cancer treatment. However, its application is compromised by the cumulative side effect of dose-dependent cardiotoxicity. Because of this, targeted drug delivery systems (DDS) are currently being explored in an attempt to reduce Dox systemic side-effects. In this study, DDS targeting hepatocellular carcinoma (HCC) has been designed, specifically to the asialoglycoprotein receptor (ASGPR). Dox-loaded albumin-albumin/lactosylated (core-shell) nanoparticles (tBSA/BSALac NPs) with low (LC) and high (HC) crosslink using glutaraldehyde were synthesized. Nanoparticles presented spherical shapes with a size distribution of 257 ± 14 nm and 254 ± 14 nm, as well as an estimated surface charge of −28.0 ± 0.1 mV and −26.0 ± 0.2 mV, respectively. The encapsulation efficiency of Dox for the two types of nanoparticles was higher than 80%. The in vitro drug release results showed a sustained and controlled release profile. Additionally, the nanoparticles were revealed to be biocompatible with red blood cells (RBCs) and human liver cancer cells (HepG2 cells). In cytotoxicity assays, Dox-loaded nanoparticles decrease cell viability more efficiently than free Dox. Specific biorecognition assays confirmed the interaction between nanoparticles and HepG2 cells, especially with ASGPRs. Both types of nanoparticles may be possible DDS specifically targeting HCC, thus reducing side effects, mainly cardiotoxicity. Therefore, improving the quality of life from patients during chemotherapy.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3