Tuning Ferulic Acid Solubility in Choline-Chloride- and Betaine-Based Deep Eutectic Solvents: Experimental Determination and Machine Learning Modeling

Author:

Jeliński Tomasz1ORCID,Przybyłek Maciej1ORCID,Różalski Rafał2ORCID,Romanek Karolina1,Wielewski Daniel1,Cysewski Piotr1ORCID

Affiliation:

1. Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Kurpińskiego 5, 85-096 Bydgoszcz, Poland

2. Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-950 Bydgoszcz, Poland

Abstract

Deep eutectic solvents (DES) represent a promising class of green solvents, offering particular utility in the extraction and development of new formulations of natural compounds such as ferulic acid (FA). The experimental phase of the study undertook a systematic investigation of the solubility of FA in DES, comprising choline chloride or betaine as hydrogen bond acceptors and six different polyols as hydrogen bond donors. The results demonstrated that solvents based on choline chloride were more effective than those based on betaine. The optimal ratio of hydrogen bond acceptors to donors was found to be 1:2 molar. The addition of water to the DES resulted in a notable enhancement in the solubility of FA. Among the polyols tested, triethylene glycol was the most effective. Hence, DES composed of choline chloride and triethylene glycol (TEG) (1:2) with added water in a 0.3 molar ration is suggested as an efficient alternative to traditional organic solvents like DMSO. In the second part of this report, the affinities of FA in saturated solutions were computed for solute-solute and all solute-solvent pairs. It was found that self-association of FA leads to a cyclic structure of the C28 type, common among carboxylic acids, which is the strongest type of FA affinity. On the other hand, among all hetero-molecular bi-complexes, the most stable is the FA-TEG pair, which is an interesting congruency with the high solubility of FA in TEG containing liquids. Finally, this work combined COSMO-RS modeling with machine learning for the development of a model predicting ferulic acid solubility in a wide range of solvents, including not only DES but also classical neat and binary mixtures. A machine learning protocol developed a highly accurate model for predicting FA solubility, significantly outperforming the COSMO-RS approach. Based on the obtained results, it is recommended to use the support vector regressor (SVR) for screening new dissolution media as it is not only accurate but also has sound generalization to new systems.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3