Profiling of Taxoid Compounds in Plant Cell Cultures of Different Species of Yew (Taxus spp.)

Author:

Kochkin Dmitry V.12ORCID,Demidova Elena V.1,Globa Elena B.1,Nosov Alexander M.12ORCID

Affiliation:

1. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Str. 35, 127276 Moscow, Russia

2. Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia

Abstract

Plant cell cultures of various yew species are a profitable source of taxoids (taxane diterpenoids) with antitumor activity. So far, despite intensive studies, the principles of the formation of different groups of taxoids in cultured in vitro plant cells have not been fully revealed. In this study, the qualitative composition of taxoids of different structural groups was assessed in callus and suspension cell cultures of three yew species (Taxus baccata, T. canadensis, and T. wallichiana) and two T. × media hybrids. For the first time, 14-hydroxylated taxoids were isolated from the biomass of the suspension culture of T. baccata cells, and their structures were identified by high-resolution mass spectrometry and NMR spectroscopy as 7β-hydroxy-taxuyunnanin C, sinenxane C, taxuyunnanine C, 2α,5α,9α,10β,14β-pentaacetoxy-4(20), 11-taxadiene, and yunnanxane. UPLC–ESI-MS screening of taxoids was performed in more than 20 callus and suspension cell lines originating from different explants and grown in over 20 formulations of nutrient media. Regardless of the species, cell line origin, and conditions, most of the investigated cell cultures retained the ability to form taxane diterpenoids. Nonpolar 14-hydroxylated taxoids (in the form of polyesters) were predominant under in vitro culture conditions in all cell lines. These results, together with the literature data, suggest that dedifferentiated cell cultures of various yew species retain the ability to synthesize taxoids, but predominantly of the 14-OH taxoid group compared to the 13-OH taxoids found in plants.

Funder

Russian Science Foundation

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3