Label-Free Homogeneous Electrochemical Aptasensor Based on Size Exclusion/Charge-Selective Permeability of Nanochannel Arrays and 2D Nanorecognitive Probe for Sensitive Detection of Alpha-Fetoprotein

Author:

Zhang Yue1,Zhang Shiyue2,Liu Jiyang2ORCID,Qin Dongyuan3

Affiliation:

1. Department of Hepatology, Taiyuan Third People’s Hospital, Taiyuan 030012, China

2. School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China

3. Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China

Abstract

The labeling-free and immobilization-free homogeneous aptamer sensor offers advantages including simple operation, low cost, and high sensitivity, demonstrating great potential in rapid detection of tumor biomarkers in biological samples. In this work, a labeling-free and immobilization-free homogeneous aptamer sensor was conveniently fabricated by combining size exclusion and charge-selective penetration of a nanochannel-modified electrode and two-dimensional (2D) nanorecognition probe which can realize selective and highly sensitive detection of alpha-fetoprotein (AFP) in serum. Vertically ordered mesoporous silica film (VMSF) with ultra-small, uniform, and vertically aligned nanochannels was easily grown on the simple, low-cost, and disposable indium tin oxide (ITO) electrode. Through π-π interaction and electrostatic force, the AFP aptamer (Apt) and electrochemical probe, tris(bipyridine)ruthenium(II) (Ru(bpy)32+), were coloaded onto graphene oxide (GO) through simple incubation, forming a 2D nanoscale recognition probe (Ru(bpy)32+/Apt@GO). Owing to the size exclusion effect of VMSF towards the 2D nanoscale probe, the electrochemical signal of Ru(bpy)32+/Apt@GO could not be detected. In the presence of AFP, the specific binding of AFP to the aptamer causes the dissociation of the aptamer and Ru(bpy)32+ from GO, resulting in their presence in the solution. The efficient electrostatic enrichment towards Ru(bpy)32+ by negatively charged VMSF allows for high electrochemical signals of free Ru(bpy)32+ in the solution. Linear determination of AFP ranged from 1 pg/mL to 1000 ng/mL and could be obtained with a low limit of detection (LOD, 0.8 pg/mL). The high specificity of the adapter endowed the constructed sensor with high selectivity. The fabricated probe can be applied in direct determination of AFP in serum.

Funder

Zhejiang Provincial Natural Science Foundation of China

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3