Quercetin and AMPK: A Dynamic Duo in Alleviating MG-Induced Inflammation via the AMPK/SIRT1/NF-κB Pathway

Author:

Lu Ziyin1,Wang Haozhen1ORCID,Ishfaq Muhammad2ORCID,Han Yufang1,Zhang Xiujin1,Li Xiang1,Wang Baoqi1,Lu Xiuli1,Gao Bing3

Affiliation:

1. School of Life Science, Liaoning University, Chongshanzhong-Lu No. 66, Shenyang 110036, China

2. College of Computer Science, Huanggang Normal University, Huanggang 438000, China

3. Department of Cell Biology and Genetics, Shenyang Medical College, Shenyang 110034, China

Abstract

Mycoplasma gallisepticum (MG) is recognized as a principal causative agent of avian chronic respiratory disease, inflicting substantial economic losses upon the poultry industry. However, the extensive use of conventional antibiotics has resulted in the emergence of drug resistance and various challenges in their clinical application. Consequently, there is an urgent need to identify effective therapeutic agents for the prevention and treatment of mycoplasma-induced respiratory disease in avian species. AMP-activated protein kinase (AMPK) holds significant importance as a regulator of cellular energy metabolism and possesses the capacity to exert an anti-inflammatory effect by virtue of its downstream protein, SIRT1. This pathway has shown promise in counteracting the inflammatory responses triggered by pathogenic infections, thus providing a novel target for studying infectious inflammation. Quercetin possesses anti-inflammatory activity and has garnered attention as a potential alternative to antibiotics. However, there exists a gap in knowledge concerning the impact of this activation on MG-induced inflammatory damage. To address this knowledge gap, we employed AlphaFold2 prediction, molecular docking, and kinetic simulation methods to perform a systematic analysis. As expected, we found that both quercetin and the AMPK activator AICAR activate the chicken AMPKγ1 subunit in a similar manner, which was further validated at the cellular level. Our project aims to unravel the underlying mechanisms of quercetin’s action as an agonist of AMPK against the inflammatory damage induced by MG infection. Accordingly, we evaluated the effects of quercetin on the prevention and treatment of air sac injury, lung morphology, immunohistochemistry, AMPK/SIRT1/NF-κB pathway activity, and inflammatory factors in MG-infected chickens. The results confirmed that quercetin effectively inhibits the secretion of pro-inflammatory cytokines such as IL-1β, TNF-α, and IL-6, leading to improved respiratory inflammation injury. Furthermore, quercetin was shown to enhance the levels of phosphorylated AMPK and SIRT1 while reducing the levels of phosphorylated P65 and pro-inflammatory factors. In conclusion, our study identifies the AMPK cascade signaling pathway as a novel cellular mediator responsible for quercetin’s ability to counter MG-induced inflammatory damage. This finding highlights the potential significance of this pathway as an important target for anti-inflammatory drug research in the context of avian respiratory diseases.

Funder

Natural Science Foundation of Liaoning University’s Science and Technology department

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3