Mechanistic Approaches to the Application of Nano-Zinc in the Poultry and Biomedical Industries: A Comprehensive Review of Future Perspectives and Challenges

Author:

Younas Zohaib1,Mashwani Zia Ur Rehman1ORCID,Ahmad Ilyas1,Khan Maarij1,Zaman Shah2ORCID,Sawati Laraib3,Sohail 4

Affiliation:

1. Department of Botany, Pir Mehr Ali Shah (PMAS)-Arid Agriculture University, Rawalpindi 46300, Pakistan

2. Department of Botany, University of Malakand, Chakdara 18800, Pakistan

3. Department of Chemical and Life Sciences, Qurtuba University of Science and Information Technology, Peshawar 25124, Pakistan

4. Institute of Biology/Plant Physiology, Humboldt-University Zü Berlin, 10115 Berlin, Germany

Abstract

Bio-fortification is a new, viable, cost-effective, and long-term method of administering crucial minerals to a populace with limited exposure to diversified foods and other nutritional regimens. Nanotechnology entities aid in the improvement of traditional nutraceutical absorption, digestibility, and bio-availability. Nano-applications are employed in poultry systems utilizing readily accessible instruments and processes that have no negative impact on animal health and welfare. Nanotechnology is a sophisticated innovation in the realm of biomedical engineering that is used to diagnose and cure various poultry ailments. In the 21st century, zinc nanoparticles had received a lot of considerable interest due to their unusual features. ZnO NPs exhibit antibacterial properties; however, the qualities of nanoparticles (NPs) vary with their size and structure, rendering them adaptable to diverse uses. ZnO NPs have shown remarkable promise in bio-imaging and drug delivery due to their high bio-compatibility. The green synthesized nanoparticles have robust biological activities and are used in a variety of biological applications across industries. The current review also discusses the formulation and recent advancements of zinc oxide nanoparticles from plant sources (such as leaves, stems, bark, roots, rhizomes, fruits, flowers, and seeds) and their anti-cancerous activities, activities in wound healing, and drug delivery, followed by a detailed discussion of their mechanisms of action.

Funder

Deutsche Forschungsgemeinschaft

Open Access Publication Fund of Humboldt-Universität zu Berlin

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3