The Effect of Poria cocos Polysaccharide PCP-1C on M1 Macrophage Polarization via the Notch Signaling Pathway

Author:

Hu Xuerui1,Hong Bangzhen1,Shan Xiaoxiao1,Cheng Yue1,Peng Daiyin123,Hu Rongfeng45,Wang Lei124ORCID,Chen Weidong1234

Affiliation:

1. School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230001, China

2. Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230001, China

3. Institute of Traditional Chinese Medicine Resource, Anhui University of Chinese Medicine, Hefei 230001, China

4. Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei 230001, China

5. Key Laboratory of Xin’an Medicine Ministry Education, Anhui University of Chinese Medicine, Hefei 230001, China

Abstract

The homogeneous galactoglucan PCP-1C extracted from Poria cocos sclerotium has multiple biological activities. The present study demonstrated the effect of PCP-1C on the polarization of RAW 264.7 macrophages and the underlying molecular mechanism. Scanning electron microscopy showed that PCP-1C is a detrital-shaped polysaccharide with fish-scale patterns on the surface, with a high sugar content. The ELISA assay, qRT-PCR assay, and flow cytometry assay showed that the presence of PCP-1C could induce higher expression of M1 markers, including tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-12 (IL-12), when compared with the control and the LPS group, and it caused a decrease in the level of interleukin-10 (IL-10), which is the marker for M2 macrophages. At the same time, PCP-1C induces an increase in the CD86 (an M1 marker)/CD206 (an M2 marker) ratio. The results of the Western blot assay showed that PCP-1C induced activation of the Notch signaling pathway in macrophages. Notch1, ligand Jagged1, and Hes1 were all up-regulated with the incubation of PCP-1C. These results indicate that the homogeneous Poria cocos polysaccharide PCP-1C improves M1 macrophage polarization through the Notch signaling pathway.

Funder

National Science Foundation of China

National Key Research and Development Project

Anhui Province Fungus medicine research and development “115” industry innovation team

Local Science and Technology Innovation Demonstration Project

Key Project of the Natural Science Foundation for the Higher Education Institutions of Anhui Province

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3