Abstract
Production of monoclonal antibodies (mAbs) is a well-known method used to synthesize a large number of identical antibodies, which are molecules of huge importance in medicine. Due to such reasons, intense efforts have been invested to maximize the mAbs production in bioreactors with hybridoma cell cultures. However, the optimal control of such sensitive bioreactors is an engineering problem difficult to solve due to the large number of state-variables with highly nonlinear dynamics, which often translates into a non-convex optimization problem that involves a significant number of decision (control) variables. Based on an adequate kinetic model adopted from the literature, this paper focuses on developing an in-silico (model-based, offline) numerical analysis of a fed-batch bioreactor (FBR) with an immobilized hybridoma culture to determine its optimal feeding policy by considering a small number of control variables, thus ensuring maximization of mAbs production. The obtained time stepwise optimal feeding policies of FBR were proven to obtain better performances than those of simple batch operation (BR) for all the verified alternatives in terms of raw material consumption and mAbs productivity. Several elements of novelty (i–iv) are pointed out in the “conclusions” section (e.g., considering the continuously added biomass as a control variable during FBR).
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Reference61 articles.
1. Bioprocess Technology—Kinetics and Reactors;Moser,1988
2. Synthetic biology--putting engineering into biology
3. In-Silico Design of Genetic Modified Micro-Organisms (GMO) of Industrial Use, by Using Systems Biology and (Bio)chemical Engineering Tools, Simi Valley;Maria,2018
4. Bioreactor performance: a more scientific approach for practice
5. Bioreactor engineering: The design and optimization of reactors with living cells
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献