High Performance Liquid Chromatography–Tandem Mass Spectrometry Method for Correlating the Metabolic Changes of Lactate, Pyruvate and L-Glutamine with Induced Tamoxifen Resistant MCF-7 Cell Line Potential Molecular Changes

Author:

Alhusban Ala A.ORCID,Albustanji SokiynaORCID,Hamadneh Lama A.ORCID,Shallan Aliaa I.

Abstract

Breast cancer is one of the most prevalent cancers worldwide usually treated with Tamoxifen. Tamoxifen resistance development is the most challenging issue in an initially responsive breast tumor, and mechanisms of resistance are still under investigation. The objective of this study is to develop and validate a selective, sensitive, and simultaneous high performance liquid chromatography–tandem mass spectrometry method to explore the changes in substrates and metabolites in supernatant media of developed Tamoxifen resistance MCF-7 cells. We focus on the determination of lactate, pyruvate, and L-glutamine which enables the tracking of changes in metabolic pathways as a result of the resistance process. Chromatographic separation was achieved within 3.5 min. using a HILIC column (4.6 × 100 mm, 3.5 µm particle size) and mobile phase of 0.05 M acetic acid–ammonium acetate buffer solution pH 3.0: Acetonitrile (40:60 v/v). The linear range was 0.11–2.25, 0.012–0.227, and 0.02–0.20 mM for lactate, pyruvate, and L-glutamine, respectively. Within- and between-run accuracy was in the range 98.94-105.50% with precision (CV, %) of ≤0.86%. The results revealed a significant increase in both lactate and pyruvate production after acquiring the resistant. An increase in L-glutamine levels was also observed and could be attributed to its over production or decline in its consumption. Therefore, further tracking of genes responsible of lactate, pyruvate, and glutamine metabolic pathways should be performed in parallel to provide in-depth explanation of resistance mechanism.

Funder

Al-Zaytoonah University of Jordan

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3