Glutamate’s Effects on the N-Methyl-D-Aspartate (NMDA) Receptor Ion Channel in Alzheimer’s Disease Brain: Challenges for PET Radiotracer Development for Imaging the NMDA Ion Channel

Author:

Shah Nehal M.1,Ghazaryan Nane1,Gonzaga Noresa L.1,Paclibar Cayz G.1,Biju Agnes P.1,Liang Christopher1,Mukherjee Jogeshwar1ORCID

Affiliation:

1. Preclinical Imaging, Department of Radiological Sciences, University of California-Irvine, Irvine, CA 92697, USA

Abstract

In an effort to further understand the challenges facing in vivo imaging probe development for the N-methyl-D-aspartate (NMDA) receptor ion channel, we have evaluated the effect of glutamate on the Alzheimer’s disease (AD) brain. Human post-mortem AD brain slices of the frontal cortex and anterior cingulate were incubated with [3H]MK-801 and adjacent sections were tested for Aβ and Tau. The binding of [3H]MK-801 was measured in the absence and presence of glutamate and glycine. Increased [3H]MK-801 binding in AD brains was observed at baseline and in the presence of glutamate, indicating a significant increase (>100%) in glutamate-induced NMDA ion channel activity in AD brains compared to cognitively normal brains. The glycine effect was lower, suggesting a decrease of the co-agonist effect of glutamate and glycine in the AD brain. Our preliminary findings suggest that the targeting of the NMDA ion channel as well as the glutamate site may be appropriate in the diagnosis and treatment of AD. However, the low baseline levels of [3H]MK-801 binding in the frontal cortex and anterior cingulate in the absence of glutamate and glycine indicate significant hurdles for in vivo imaging probe development and validation.

Funder

National Institute of Health

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference66 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3