Trans-(±)-TTPG-B Attenuates Cell Cycle Progression and Inhibits Cell Proliferation on Cholangiocarcinoma Cells

Author:

Rattanaburee Thidarath12ORCID,Chompunud Na Ayudhya Chompunud1,Thongpanchang Tienthong3,Tipmanee Varomyalin1ORCID,Graidist Potchanapond1ORCID

Affiliation:

1. Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand

2. Biochemistry Unit, Department of Medical Sciences, Faculty of Science, Rangsit University, Pathum Thani 12000, Thailand

3. Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok 10400, Thailand

Abstract

This research aimed to determine the target protein and molecular mechanism of trans-(±)-kusunokinin (KU) derivatives ((±)-arctigenin (ARC) and trans-(±)-TTPG-B). Molecular docking was used to predict potential synthesized (±)-KU targets among 22 proteins. The (+)-TTPG-B bound HSP90α better than EC44, native (±)-KU and trans-(±)-ARC. In contrast, (−)-ARC bound PI3K more strongly than any other test compound. CSF1R and AKR1B1 were not supposed to be the target of (±)-TTPG-B and (±)-ARC, unlike native (±)-KU. The (+)-TTPG-B bound Tyr139 and Trp162 of HSP90α. Moreover, (−)-ARC bound PI3K via hydrogen bonds and π-π stacking at distinct amino acids, which was different from the other tested compounds. Using half of the IC50 concentration, (±)-TTPG-B, (±)-KU and (±)-ARC enhanced cell cycle arrest at the G0/G1 phase after 12 h and 24 h on KKU-M213 (CCA) cells. The (±)-TTPG-B showed a stronger inhibitory effect than (±)-ARC and (±)-KU on HSP90α, PI3K, HSP90β, c-Myc, AKT, MEK1, CyclinB1, CyclinD1, and CDK1 for 24 and 48 h after treatment with the same concentration (0.015 µM). Thus, trans-(±)-TTPG-B, a newly synthesized compound, has pharmacological potential for development as a target therapy for CCA treatment.

Funder

Faculty of Medicine, Prince of Songkla University

Prince of Songkla University

RSU Research Institute of Rangsit University

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3