In Vitro Phytobiological Investigation of Bioactive Secondary Metabolites from the Malus domestica-Derived Endophytic Fungus Aspergillus tubingensis Strain AN103

Author:

Mohamed HassanORCID,Ebrahim WeaamORCID,El-Neketi Mona,Awad Mohamed F.ORCID,Zhang Huaiyuan,Zhang Yao,Song YuandaORCID

Abstract

Endophytic fungi including black aspergilli have the potential to synthesize multiple bioactive secondary metabolites. Therefore, the search for active metabolites from endophytic fungi against pathogenic microbes has become a necessity for alternative and promising strategies. In this study, 25 endophytic fungal isolates associated with Malus domestica were isolated, grown, and fermented on a solid rice medium. Subsequently, their ethyl acetate crude extracts were pretested for biological activity. One endophytic fungal isolate demonstrated the highest activity and was chosen for further investigation. Based on its phenotypic, ITS ribosomal gene sequences, and phylogenetic characterization, this isolate was identified as Aspergillus tubingensis strain AN103 with the accession number (KR184138). Chemical investigations of its fermented cultures yielded four compounds: Pyranonigrin A (1), Fonsecin (2), TMC 256 A1 (3), and Asperazine (4). Furthermore, 1H-NMR, HPLC, and LC-MS were performed for the identification and structure elucidation of these metabolites. The isolated pure compounds showed moderate-to-potent antibacterial activities against Pseudomonas aeruginosa and Escherichia coli (MIC value ranged from 31 and 121 to 14.5 and 58.3 μg/mL), respectively; in addition, the time–kill kinetics for the highly sensitive bacteria against isolated compounds was also investigated. The antifungal activity results show that (3) and (4) had the maximum effect against Fusarium solani and A. niger with inhibition zones of 16.40 ± 0.55 and 16.20 ± 0.20 mm, respectively, and (2) had the best effect against Candida albicans, with an inhibition zone of 17.8 ± 1.35 mm. Moreover, in a cytotoxicity assay against mouse lymphoma cell line L5178Y, (4) exhibited moderate cytotoxicity (49% inhibition), whereas (1–3) reported weak cytotoxicity (15, 26, and 19% inhibition), respectively. Our results reveal that these compounds might be useful to develop potential cytotoxic and antimicrobial drugs and an alternative source for various medical and pharmaceutical fields.

Funder

National Natural Science Foundation of China

TaiShan Industrial Experts Programme

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3