Inhibition of Endoplasmic Reticulum Stress Improves Acetylcholine-Mediated Relaxation in the Aorta of Type-2 Diabetic Rats

Author:

Mustapha SagirORCID,Azemi Ahmad KhusairiORCID,Wan Ahmad Wan Amir NizamORCID,Rasool Aida Hanum Ghulam,Mustafa Mohd Rais,Mokhtar Siti Safiah

Abstract

Endoplasmic reticulum (ER) stress contributes to insulin resistance and macro- and microvascular complications associated with diabetes. This study aimed to evaluate the effect of ER stress inhibition on endothelial function in the aorta of type-2 diabetic rats. Type-2 diabetes was developed in male Sprague–Dawley rats using a high-fat diet and low-dose streptozotocin. Rat aortic tissues were harvested to study endothelial-dependent relaxation. The mechanisms for acetylcholine-mediated relaxation were investigated using pharmacological blockers, Western blotting, oxidative stress, and inflammatory markers. Acetylcholine-mediated relaxation was diminished in the aorta of diabetic rats compared to control rats; supplementation with TUDCA improved relaxation. In the aortas of control and diabetic rats receiving TUDCA, the relaxation was mediated via eNOS/PI3K/Akt, NAD(P)H, and the KATP channel. In diabetic rats, acetylcholine-mediated relaxation involved eNOS/PI3K/Akt and NAD(P)H, but not the KATP channel. The expression of ER stress markers was upregulated in the aorta of diabetic rats and reduced with TUDCA supplementation. The expression of eNOS and Akt were lower in diabetic rats but were upregulated after supplementation with TUDCA. The levels of MDA, IL-6, and SOD activity were higher in the aorta of the diabetic rats compared to control rats. This study demonstrated that endothelial function was impaired in diabetes, however, supplementation with TUDCA improved the function via eNOS/Akt/PI3K, NAD(P)H, and the KATP channel. The improvement of endothelial function was associated with increased expressions of eNOS and Akt. Thus, ER stress plays a crucial role in the impairment of endothelial-dependent relaxation. Mitigating ER stress could be a potential strategy for improving endothelial dysfunction in type-2 diabetes.

Funder

Malaysian Ministry of Higher Education

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3