Learning Multi-Types of Neighbor Node Attributes and Semantics by Heterogeneous Graph Transformer and Multi-View Attention for Drug-Related Side-Effect Prediction

Author:

Xuan Ping12,Li Peiru1,Cui Hui3,Wang Meng1,Nakaguchi Toshiya4,Zhang Tiangang15

Affiliation:

1. School of Computer Science and Technology, Heilongjiang University, Harbin 130407, China

2. Department of Computer Science, School of Engineering, Shantou University, Shantou 515000, China

3. Department of Computer Science and Information Technology, La Trobe University, Melbourne 3086, Australia

4. Center for Frontier Medical Engineering, Chiba University, Chiba 263-8522, Japan

5. School of Mathematical Science, Heilongjiang University, Harbin 130407, China

Abstract

Since side-effects of drugs are one of the primary reasons for their failure in clinical trials, predicting their side-effects can help reduce drug development costs. We proposed a method based on heterogeneous graph transformer and capsule networks for side-effect-drug-association prediction (TCSD). The method encodes and integrates attributes from multiple types of neighbor nodes, connection semantics, and multi-view pairwise information. In each drug-side-effect heterogeneous graph, a target node has two types of neighbor nodes, the drug nodes and the side-effect ones. We proposed a new heterogeneous graph transformer-based context representation learning module. The module is able to encode specific topology and the contextual relations among multiple kinds of nodes. There are similarity and association connections between the target node and its various types of neighbor nodes, and these connections imply semantic diversity. Therefore, we designed a new strategy to measure the importance of a neighboring node to the target node and incorporate different semantics of the connections between the target node and its multi-type neighbors. Furthermore, we designed attentions at the neighbor node type level and at the graph level, respectively, to obtain enhanced informative neighbor node features and multi-graph features. Finally, a pairwise multi-view feature learning module based on capsule networks was built to learn the pairwise attributes from the heterogeneous graphs. Our prediction model was evaluated using a public dataset, and the cross-validation results showed it achieved superior performance to several state-of-the-art methods. Ablation experiments undertaken demonstrated the effectiveness of heterogeneous graph transformer-based context encoding, the position enhanced pairwise attribute learning, and the neighborhood node category-level attention. Case studies on five drugs further showed TCSD’s ability in retrieving potential drug-related side-effect candidates, and TCSD inferred the candidate side-effects for 708 drugs.

Funder

Natural Science Foundation of China

STU Scientific Research Initiation Grant

Natural Science Foundation of Heilongjiang Province

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3