Synthesis of Pyrrolo[3,4-b]pyridin-5-ones via Multicomponent Reactions and In Vitro–In Silico Studies Against SiHa, HeLa, and CaSki Human Cervical Carcinoma Cell Lines

Author:

Segura-Olvera Daniel,García-González Ailyn N.,Morales-Salazar Ivette,Islas-Jácome AlejandroORCID,Rojas-Aguirre Yareli,Ibarra Ilich A.ORCID,Díaz-Cervantes ErikORCID,Alcaraz-Estrada Sofía Lizeth,González-Zamora EduardoORCID

Abstract

A series of 12 polysubstituted pyrrolo[3,4-b]pyridin-5-ones were synthesized via a one-pot cascade process (Ugi–3CR/aza Diels-Alder/N-acylation/decarboxylation/dehydration) and studied in vitro using human epithelial cervical carcinoma SiHa, HeLa, and CaSki cell line cultures. Three compounds of the series exhibited significative cytotoxicity against the three cell lines, with HeLa being the most sensitive one. Then, based on these results, in silico studies by docking techniques were performed using Paclitaxel as a reference and αβ-tubulin as the selected biological target. Worth highlighting is that strong hydrophobic interactions were observed between the three active molecules and the reference drug Paclitaxel, to the αβ-tubulin. In consequence, it was determined that hydrophobic–aromatic moieties of bioactive compounds and Paclitaxel play a key role in making stronger interactions to the ligand–target complex. A quantitative structure activity relationship (QSAR) study revealed that the six membered rings are the most significant molecular frameworks, being present in all proposed models for the in vitro-studied cell lines. Finally, also from the docking interpretation, a ligand-based pharmacophore model is proposed in order to find further potential polyheterocyclic candidates to bind stronger to the αβ-tubulin.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference58 articles.

1. Cancer 2025: Introduction

2. Apoptosis in cancer: from pathogenesis to treatment

3. In silico evaluation of modes of action of anticancer compounds on molecular targets for cancer

4. Cervical Cancer and HPV Vaccines in Developing Countries;Zarchi;Asian Pac. J. Cancer Prev.,2009

5. Inhibiting Effects of Cidofovir (HPMPC) on the Growth of the Human Cervical Carcinoma (SiHa) Xenografts in Athymic Nude Mice;Andrei;Oncol. Res.,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3