Targeted Delivery of Arctigenin Using Sialic Acid Conjugate-Modified Liposomes for the Treatment of Breast Cancer

Author:

Liu Shunfang12ORCID,He Yaozhen12ORCID,Feng Minding13,Huang Yongtong12ORCID,Wu Wenhao12ORCID,Wang Jiu123

Affiliation:

1. Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China

2. Guangdong High Education Institutes Engineering Research Center of Modified-Released Pharmaceutical Products, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China

3. Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China

Abstract

Arctigenin (ATG) is a broad-spectrum antitumor drug with an excellent inhibitory effect on malignant tumors such as breast cancer, glioblastoma, liver cancer, and colon cancer. However, the clinical application of ATG is limited by its poor water solubility and quick hydrolysis in the liver, intestine, and plasma, which might hinder its application. Sialic acid (SA) recognizes selectin receptors overexpressed on the surface of tumor-associated macrophages. In this study, SA was conjugated with octadecylamine (ODA) to prepare SA-ODA, which was employed to prepare SA functionalized nanoliposomes (SA-Lip) to achieve breast cancer targeting. The formulations were finely optimized using the Box–Behnken design to achieve higher ATG loading. The size, ζ potential, entrapment efficiency, drug loading, and release behavior of ATG@SA-Lip were fully investigated in comparison with conventional ATG@Lip. The ATG@SA-Lip displayed more potent cytotoxicity and higher cellular internalization compared to ATG@Sol and ATG@Lip in both MCF7 and 4T1 cells. Notably, ATG@SA-Lip showed the lowest impact on the immune system. Our study demonstrates that SA-Lip has strong potential as a delivery system for the targeted delivery of ATG.

Funder

Medical Scientific Research Foundation of Guangdong Province

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3