Evaluation of Small Molecular Polypeptides from the Mantle of Pinctada Martensii on Promoting Skin Wound Healing in Mice

Author:

Yang FamingORCID,Qin Xiaoming,Zhang Ting,Lin HaishengORCID,Zhang Chaohua

Abstract

Skin wound healing, especially chronic wound healing, is a common challenging clinical problem. It is urgent to broaden the sources of bioactive substances that can safely and efficiently promote skin wound healing. This study aimed to observe the effects of small molecular peptides (SMPs) of the mantle of Pinctada martensii on wound healing. After physicochemical analysis of amino acids and mass spectrometry of SMPs, the effect of SMPs on promoting healing was studied through a whole cortex wound model on the back of mice for 18 consecutive days. The results showed that SMPs consisted of polypeptides with a molecular weight of 302.17–2936.43 Da. The content of polypeptides containing 2–15 amino acids accounted for 73.87%, and the hydrophobic amino acids accounted for 56.51%. Results of in vitro experimentation showed that SMPs possess a procoagulant effect, but no antibacterial activity. Results of in vivo experiments indicated that SMPs inhibit inflammatory response by secretion of anti-inflammatory factor IL-10 during the inflammatory phase; during the proliferative phase, SMPs promote the proliferation of fibroblasts and keratinocytes. The secretion of transforming growth factor-β1 and cyclin D1 accelerates the epithelialization and contraction of wounds. In the proliferative phase, SMPs effectively promote collagen deposition and partially inhibit superficial scar hyperplasia. These results show that SMPs promotes dermal wound healing in mice and have a tremendous potential for development and utilization in skin wound healing.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3