Stepwise Targeted Matching Strategy for Comprehensive Profiling of Xanthohumol Metabolites In Vivo and In Vitro Using UHPLC-Q-Exactive Orbitrap Mass Spectrometer

Author:

Yuan Xiaoqing1,Wang Hong2,Song Shuyi1,Qiu Lili3,Lan Xianming1,Dong Pingping4,Zhang Jiayu1ORCID

Affiliation:

1. College of Pharmacy, Binzhou Medical University, Yantai 264003, China

2. College of Life Sciences, Shandong Agricultural University, Taian 271018, China

3. Department of Medicine, Binzhou Polytechnic College, Binzhou 256600, China

4. State Key Laboratory for Quality Research of Chinese Medicines, College of Pharmacy, Macau University of Science and Technology, Macao 999078, China

Abstract

Xanthohumol (XN), a natural prenylated flavonoid extracted and isolated from the hop plant (Humulus lupulus), possesses diverse pharmacological activities. Although the metabolites of XN have been investigated in the previous study, a comprehensive metabolic profile has been insufficient in vivo or in vitro until now. The current study was aimed at systematically elucidating the metabolic pathways of XN after oral administration to rats. Herein, a UHPLC-Q-Exactive Orbitrap MS was adopted for the potential metabolites detection. A stepwise targeted matching strategy for the overall identification of XN metabolites was proposed. A metabolic net (53 metabolites included) on XN in vivo and in vitro, as well as the metabolic profile investigation, were designed, preferably characterizing XN metabolites in rat plasma, urine, liver, liver microsomes, and feces. On the basis of a stepwise targeted matching strategy, the net showed that major in vivo metabolic pathways of XN in rats include glucuronidation, sulfation, methylation, demethylation, hydrogenation, dehydrogenation, hydroxylation, and so on. The proposed metabolic pathways in this research will provide essential data for further pharmaceutical studies of prenylated flavonoids and lay the foundation for further toxicity and safety studies.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3