Acetylation of Oleanolic Acid Dimers as a Method of Synthesis of Powerful Cytotoxic Agents

Author:

Günther Andrzej1ORCID,Zalewski Przemysław2ORCID,Sip Szymon2ORCID,Ruszkowski Piotr3ORCID,Bednarczyk-Cwynar Barbara14ORCID

Affiliation:

1. Department of Organic Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Collegium Pharmaceuticum 2 (CP.2), Rokietnicka Str. 3, 60-806 Poznan, Poland

2. Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Collegium Pharmaceuticum 1 (CP.1), Rokietnicka Str. 3, 60-806 Poznan, Poland

3. Department of Pharmacology, Faculty of Pharmacy, Poznan University of Medical Sciences, Collegium Pharmaceuticum 1 (CP.1), Rokietnicka Str. 3, 60-806 Poznan, Poland

4. Center of Innovative Pharmaceutical Technology (CITF), Rokietnicka Str. 3, 60-806 Poznan, Poland

Abstract

Oleanolic acid, a naturally occurring triterpenoid compound, has garnered significant attention in the scientific community due to its diverse pharmacological properties. Continuing our previous work on the synthesis of oleanolic acid dimers (OADs), a simple, economical, and safe acetylation reaction was performed. The newly obtained derivatives (AcOADs, 3a–3n) were purified using two methods. The structures of all acetylated dimers (3a–3n) were determined based on spectral methods (IR, NMR). For all AcOADs (3a–3n), the relationship between the structure and the expected directions of pharmacological activity was determined using a computational method (QSAR computational analysis). All dimers were also tested for their cytotoxic activity on the SKBR-3, SKOV-3, PC-3, and U-87 cancer cell lines. HDF cell line was applied to evaluate the Selectivity Index of the tested compounds. All cytotoxic tests were performed with the application of the MTT assay. Finally, all dimers of oleanolic acid were subjected to DPPH and CUPRAC tests to evaluate their antioxidant activity. The obtained results indicate a very high level of cytotoxic activity (IC50 for most AcOADs below 5.00 µM) and a fairly high level of antioxidant activity (Trolox equivalent in some cases above 0.04 mg/mL).

Funder

Poznan University of Medical Sciences

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3