Deciphering the Mechanism by Which Carbon Dioxide Extends the Shelf Life of Raw Milk: A Microbiomics- and Metabolomics-Based Approach

Author:

Zheng Anran12,Wei Chaokun12,Liu Jun3ORCID,Bu Ningxia12,Liu Dunhua12

Affiliation:

1. School of Animal Science and Technology, Ningxia University, Yinchuan 750021, China

2. School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China

3. School of Life Sciences, Hubei Normmal University, Huangshi 435002, China

Abstract

Microbial community succession in raw milk determines its quality and storage period. In this study, carbon dioxide (CO2) at 2000 ppm was used to treat raw milk to investigate the mechanism of extending the shelf life of raw milk by CO2 treatment from the viewpoint of microbial colonies and metabolites. The results showed that the shelf life of CO2-treated raw milk was extended to 16 days at 4 °C, while that of the control raw milk was only 6 days. Microbiomics analysis identified 221 amplicon sequence variants (ASVs) in raw milk, and the alpha diversity of microbial communities increased (p < 0.05) with the extension of storage time. Among them, Pseudomonas, Actinobacteria and Serratia were the major microbial genera responsible for the deterioration of raw milk, with a percentage of 85.7%. A combined metagenomics and metabolomics analysis revealed that microorganisms altered the levels of metabolites, such as pyruvic acid, glutamic acid, 5′-cmp, arginine, 2-propenoic acid and phenylalanine, in the raw milk through metabolic activities, such as ABC transporters, pyrimidine metabolism, arginine and proline metabolism and phenylalanine metabolism, and reduced the shelf life of raw milk. CO2 treatment prolonged the shelf life of raw milk by inhibiting the growth of Gram-negative aerobic bacteria, such as Acinetobacter guillouiae, Pseudomonas fluorescens, Serratia liquefaciens and Pseudomonas simiae.

Funder

National Natural Science Foundation of Ningxia Province

Key research and development projects in Ningxia Province

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3