H-rGO-Pd NPs Nanozyme Enhanced Silver Deposition Strategy for Electrochemical Detection of Glypican-3

Author:

Li Guiyin12ORCID,Wang Bo1,Li Ling1,Li Xinhao1,Yan Ruijie1,Liang Jintao1,Zhou Xinchun3,Li Liuxun4ORCID,Zhou Zhide1

Affiliation:

1. Guangxi Key Laboratory of Information Materials, School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China

2. College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming 525000, China

3. Guangdi Maoming Chemical Co., Ltd., Maoming High-Tech Industrial Development Zone, Maoming 525000, China

4. Solid Tumour Target Discovery Laboratory, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK

Abstract

Glypican-3 (GPC3), as an emerging biomarker, has been shown to be beneficial for the early diagnosis and treatment of hepatocellular carcinoma (HCC). In this study, an ultrasensitive electrochemical biosensor for GPC3 detection has been constructed based on the hemin-reduced graphene oxide-palladium nanoparticles (H-rGO-Pd NPs) nanozyme-enhanced silver deposition signal amplification strategy. When GPC3 specifically interacted with GPC3 antibody (GPC3Ab) and GPC3 aptamer (GPC3Apt), an “H-rGO-Pd NPs-GPC3Apt/GPC3/GPC3Ab” sandwich complex was formed with peroxidase-like properties which enhanced H2O2 to reduce the silver (Ag) ions in solution to metallic Ag, resulting in the deposition of silver nanoparticles (Ag NPs) on the surface of the biosensor. The amount of deposited Ag, which was derived from the amount of GPC3, was quantified by the differential pulse voltammetry (DPV) method. Under ideal circumstances, the response value was linearly correlated with GPC3 concentration at 10.0–100.0 μg/mL with R2 of 0.9715. When the GPC3 concentration was in the range from 0.01 to 10.0 μg/mL, the response value was logarithmically linear with the GPC3 concentration with R2 of 0.9941. The limit of detection was 3.30 ng/mL at a signal-to-noise ratio of three and the sensitivity was 1.535 μAμM−1cm−2. Furthermore, the electrochemical biosensor detected the GPC3 level in actual serum samples with good recoveries (103.78–106.52%) and satisfactory relative standard deviations (RSDs) (1.89–8.81%), which confirmed the applicability of the sensor in practical applications. This study provides a new analytical method for measuring the level of GPC3 in the early diagnosis of HCC.

Funder

the National Nature Science Foundation of China

Projects of Talents Recruitment of GDUPT

the Open Fund of Guangxi Key Laboratory of Information Materials

the Fund of Guangxi Key laboratory of Metabolic Diseases Research

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3