Synthesis and Antiproliferative Activity of 2,6-Disubstituted Imidazo[4,5-b]pyridines Prepared by Suzuki Cross Coupling

Author:

Boček Pavlinac Ida1ORCID,Dragić Mirna1,Persoons Leentje2ORCID,Daelemans Dirk2ORCID,Hranjec Marijana1ORCID

Affiliation:

1. Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000 Zagreb, Croatia

2. KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, 3000 Leuven, Belgium

Abstract

A series of novel 2,6-diphenyl substituted imidazo[4,5-b]pyridines was designed and synthesized using optimized Suzuki cross coupling to evaluate their biological activity in vitro. The conditions of the Suzuki coupling were evaluated and optimized using a model reaction. To study the influence of the substituents on the biological activity, we prepared N-unsubstituted and N-methyl substituted imidazo[4,5-b]pyridines with different substituents at the para position on the phenyl ring placed at position 6 on the heterocyclic scaffold. Antiproliferative activity was determined on diverse human cancer cell lines, and the selectivity of compounds with promising antiproliferative activity was determined on normal peripheral blood mononuclear cells (PBMC). Pronounced antiproliferative activity was observed for p-hydroxy substituted derivatives 13 and 19, both displaying strong activity against most of the tested cell lines (IC50 1.45–4.25 μM). The unsubstituted N-methyl derivative 19 proved to be the most active derivative. There was a dose-dependent accumulation of G2/M arrested cells in several cancer cell lines after exposure to compound 19, implying a cell cycle-phase-specific mechanism of action. Additionally, the novel series of derivatives was evaluated for antiviral activity against a broad panel of viruses, yet the majority of tested compounds did not show antiviral activity.

Funder

Croatian Science Foundation

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3