A Near-Infrared Fluorescent and Photoacoustic Probe for Visualizing Biothiols Dynamics in Tumor and Liver

Author:

Ding Weizhong12,Yao Shankun12,Chen Yuncong123ORCID,Wu Yanping12,Li Yaheng12,He Weijiang13,Guo Zijian123ORCID

Affiliation:

1. State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China

2. Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China

3. Nanchuang (Jiangsu) Institute of Chemistry and Health, Nanjing 210000, China

Abstract

Biothiols, including glutathione (GSH), homocysteine (Hcy) and cysteine (Cys), play crucial roles in various physiological processes. Though an array of fluorescent probes have been designed to visualize biothiols in living organisms, few one-for-all imaging agents for sensing biothiols with fluorescence and photoacoustic imaging capabilities have been reported, since instructions for synchronously enabling and balancing every optical imaging efficacy are deficient. Herein, a new near-infrared thioxanthene-hemicyanine dye (Cy-DNBS) has been constructed for fluorescence and photoacoustic imaging of biothiols in vitro and in vivo. Upon treatment with biothiols, the absorption peak of Cy-DNBS shifted from 592 nm to 726 nm, resulting in a strong NIR absorption as well as a subsequent turn-on PA signal. Meanwhile, the fluorescence intensity increased instantaneously at 762 nm. Then, Cy-DNBS was successfully utilized for imaging endogenous and exogenous biothiols in HepG2 cells and mice. In particular, Cy-DNBS was employed for tracking biothiols upregulation in the liver of mice triggered by S-adenosyl methionine by means of fluorescent and photoacoustic imaging methods. We expect that Cy-DNBS serves as an appealing candidate for deciphering biothiols-related physiological and pathological processes.

Funder

Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Excellent Research Program of Nanjing University

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3