Epigallocatechin-3-Gallate (EGCG), an Active Compound of Green Tea Attenuates Acute Lung Injury Regulating Macrophage Polarization and Krüpple-Like-Factor 4 (KLF4) Expression

Author:

Almatroodi Saleh A.,Almatroudi AhmadORCID,Alsahli Mohammed A.,Aljasir Mohammad A.ORCID,Syed Mansoor AliORCID,Rahmani Arshad Husain

Abstract

Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) are serious clinical complications with a high frequency of morbidity and mortality. The initiation and amplification of inflammation is a well-known aspect in the pathogenesis of ALI and related disorders. Therefore, inhibition of the inflammatory mediators could be an ideal approach to prevent ALI. Epigallocatechin-3-gallate (EGCG), a major constituent of green tea, has been shown to have protective effects on oxidative damage and anti-inflammation. The goal of the present study was to determine whether EGCG improves phenotype and macrophage polarisation in LPS-induced ALI. C57BL/6 mice were given two doses of EGCG (15 mg/kg) intraperitoneally (IP) 1 h before and 3 h after LPS instillation (2 mg/kg). EGCG treatment improved histopathological lesions, Total Leucocyte count (TLC), neutrophils infiltration, wet/dry ratio, total proteins and myeloperoxidase (MPO) activity in LPS-induced lung injury. The results displayed that EGCG reduced LPS-induced ALI as it modulates macrophage polarisation towards M2 status. Furthermore, EGCG also reduced the expression of proinflammatory M1 mediators iNOS TNF-α, IL-1β and IL-6 in the LPS administered lung microenvironment. In addition, it increased the expression of KLF4, Arg1 and ym1, known to augment the M2 phenotype of macrophages. EGCG also alleviated the expression of 8-OHdG, nitrotyrosine, showing its ability to inhibit oxidative damage. TREM1 in the lung tissue and improved lung regenerative capacity by enhancing Ki67, PCNA and Ang-1 protein expression. Together, these results proposed the protective properties of EGCG against LPS-induced ALI in may be attributed to the suppression of M1/M2 macrophages subtype ratio, KLF4 augmentation, lung cell regeneration and regulating oxidative damage in the LPS-induced murine ALI.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3