Soy Isoflavones Induce Cell Death by Copper-Mediated Mechanism: Understanding Its Anticancer Properties

Author:

Farhan Mohd1ORCID,El Oirdi Mohamed1ORCID,Aatif Mohammad2ORCID,Nahvi Insha1,Muteeb Ghazala3ORCID,Alam Mir Waqas4ORCID

Affiliation:

1. Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al Ahsa 31982, Saudi Arabia

2. Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al Ahsa 31982, Saudi Arabia

3. Department of Nursing, College of Applied Medical Sciences, King Faisal University, Al Ahsa 31982, Saudi Arabia

4. Department of Physics, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia

Abstract

Cancer incidence varies around the globe, implying a relationship between food and cancer risk. Plant polyphenols are a class of secondary metabolites that have recently attracted attention as possible anticancer agents. The subclass of polyphenols, known as isoflavones, includes genistein and daidzein, which are present in soybeans and are regarded as potent chemopreventive agents. According to epidemiological studies, those who eat soy have a lower risk of developing certain cancers. Several mechanisms for the anticancer effects of isoflavones have been proposed, but none are conclusive. We show that isoflavones suppress prostate cancer cell growth by mobilizing endogenous copper. The copper-specific chelator neocuproine decreases the apoptotic potential of isoflavones, whereas the iron and zinc chelators desferroxamine mesylate and histidine do not, confirming the role of copper. Reactive oxygen species (ROS) scavengers reduce isoflavone-induced apoptosis in these cells, implying that ROS are cell death effectors. Our research also clearly shows that isoflavones interfere with the expression of the two copper transporter genes, CTR1 and ATP7A, in cancerous cells. Copper levels are widely known to be significantly raised in all malignancies, and we confirm that isoflavones can target endogenous copper, causing prooxidant signaling and, eventually, cell death. These results highlight the importance of copper dynamics within cancer cells and provide new insight into the potential of isoflavones as cancer-fighting nutraceuticals.

Funder

Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3