Ginsenoside Rb1 Interfered with Macrophage Activation by Activating PPARγ to Inhibit Insulin Resistance in Obesity

Author:

Ding Hongyue1,Dong Jinxiang1,Wang Yuqi1,Huang Qiang1,Xu Jie1,Qiu Zhidong1,Yao Fan1ORCID

Affiliation:

1. School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China

Abstract

Type 2 diabetes (T2D) is characterized by insulin resistance (IR), often accompanied by inflammation. Macrophage activation acts as an inflammatory response, which is characterized by macrophage recruitment in the initial stage. Ginsenoside Rb1 (Rb1) is a main active ingredient, which is known for its fat-reducing, anti-inflammatory effects. To clarify that Rb1 regulates macrophage activation in adipose tissue and improves tissue inflammation, network pharmacology and molecular docking were used for target prediction and preliminary validation. By constructing the co-culture model of adipose-derived stem cells (ADSC) and primary macrophage (PM), the body adipose tissue microenvironment was simulated to observe the adipogenesis degree of adipocytes under the effect of Rb1. The levels of cytokines, macrophage polarization, and protein or RNA expression in the inflammatory signaling pathway were finally detected. The results showed that 89 common targets of T2D-Rb1 were obtained after their intersection. Furthermore, according to the results of the KEGG pathway and PPI analysis, PTGS2 (COX-2) is the downstream protein of PPARγ-NF-κB. The molecular binding energy of PPARγ-Rb1 is −6.8 kcal/mol. Rb1 significantly inhibited the increase in MCP-1, TNF-α, and IL-1β induced by hypertrophic adipocytes supernatant and promoted the expression of IL-10. Rb1 inhibited the activation of inflammatory macrophages and PM migration and upregulated PPARγ expression with the blocking of NF-κB activation. Additionally, Rb1 promoted the expression of IRS1 and PI3K in the insulin signal pathway, which had a similar effect with ROS. Therefore, Rb1 might affect macrophage activation through PPARγ, which might alleviate obese insulin resistance in T2D early stage.

Funder

Major Science and technology projects of Jilin province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3