Electrical and Optical Properties of Silicon Oxide Lignin Polylactide (SiO2-L-PLA)

Author:

Fal JacekORCID,Bulanda Katarzyna,Traciak JulianORCID,Sobczak Jolanta,Kuzioła Rafał,Grąz Katarzyna Maria,Budzik Grzegorz,Oleksy Mariusz,Żyła GawełORCID

Abstract

This paper presents a study on the electrical properties of new polylactide-based nanocomposites with the addition of silicon-dioxide–lignin nanoparticles and glycerine as a plasticizer. Four samples were prepared with nanoparticle mass fractions ranging between 0.01 to 0.15 (0.01, 0.05, 0.10, and 0.15), and three samples were prepared without nanoparticle filler—unfilled and unprocessed polylactide, unfilled and processed polylactide, and polylactide with Fusabond and glycerine. All samples were manufactured using the melt mixing extrusion technique and injection molding. Only the unfilled and unprocessed PLA sample was directly prepared by injection molding. Dielectric properties were studied with broadband spectroscopy in a frequency range from 0.1 Hz to 1 MHz in 55 steps designed on a logarithmic scale and a temperature range from 293.15 to 333.15 K with a 5 K step. Optical properties of nanocomposites were measured with UV-VIS spectroscopy at wavelengths from 190 to 1100 nm. The experimental data show that the addition of silicon-dioxide–lignin and glycerine significantly affected the electrical properties of the studied nanocomposites based on polylactide. Permittivity and electrical conductivity show a significant increase with an increasing concentration of nanoparticle filler. The optical properties are also affected by nanofiller and cause an increase in absorbance as the number of silicon-dioxide–lignin nanoparticles increase.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference46 articles.

1. Techno-Economic Feasibility of Large-Scale Production of Bio-Based Polymers in Europe;Patel,2005

2. Product overview and market projection of emerging bio-based plastics PRO-BIP 2009;Shen,2009

3. Nonlinear behavior of PLA and lignin-based flax composites subjected to tensile loading

4. Polylactide-Layered Silicate Nanocomposite:  A Novel Biodegradable Material

5. Processing technologies for poly(lactic acid)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3