Synthesis of Methylgenipin and Evaluation of Its Anti-Hepatic Injury Activity

Author:

Wang Jingjing1,Qiu Yongwei1,Chen Yaohui2,Zhou Feng2,Wang Shuaikang1,Chen Liping1,Chen Yinfang13,Yu Riyue13,Huang Liping13ORCID

Affiliation:

1. School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China

2. Jiangxi Provincial People’s Hospital, Nanchang 330012, China

3. Jiangxi Provincial Key Laboratory of Pharmacology of Traditional Chinese Medicine, Nanchang 330004, China

Abstract

Genipin has been the focus of research as a multifunctional compound for the treatment of pathogenic diseases. However, hepatotoxicity caused by oral genipin raises concerns about its safety. To obtain novel derivatives with low toxicity and efficacy, we synthesized methylgenipin (MG), a new compound, using structural modification, and investigated the safety of MG administration. The results showed that the LD50 of oral MG was higher than 1000 mg/kg, no mice died or were poisoned during the experiment in the treatment group, and there was no significant difference in biochemical parameters and liver pathological sections compared with the control. Importantly, MG (100 mg/kg/d) treatment for 7 days reduced alpha-naphthylisothiocyanate (ANIT)-induced increases in liver index, alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (AKP), and total bilirubin (TBIL) levels. Histopathology demonstrated that MG could treat ANIT-induced cholestasis. In addition, using proteomics to investigate the molecular mechanism of MG in the treatment of a liver injury may be related to enhancing antioxidant function. Kit validation showed that ANIT induced an increase in malondialdehyde (MDA) and a decrease in superoxide dismutase (SOD) and glutathione (GSH) levels, while the MG pretreatments, both of which were significantly reversed to some extent, suggested that MG may alleviate ANIT-induced hepatotoxicity by enhancing endogenous antioxidant enzymes and inhibiting oxidative stress injury. In this study, we demonstrate that the treatment of mice with MG does not cause impaired liver function and provide an investigation of the efficacy of MG against ANIT-induced hepatotoxicity, laying the foundation for the safety evaluation and clinical application of MG.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3