Aluminium(III) Oxide—The Silent Killer of Bacteria

Author:

Schabikowski MateuszORCID,Kowalczyk PawełORCID,Karczmarska AgnieszkaORCID,Gawdzik Barbara,Wypych AleksandraORCID,Kramkowski Karol,Wrzosek KarolORCID,Laskowski ŁukaszORCID

Abstract

In this article, we describe the antimicrobial properties of pristine anodised aluminium oxide matrices—the material many consider biologically inert. During a typical anodisation process, chromium and chlorine compounds are used for electropolishing and the removal of the first-step aluminium oxide. Matrices without the use of those harmful compounds were also fabricated and tested for comparison. The antibacterial tests were conducted on four strains of Escherichia coli: K12, R2, R3 and R4. The properties of the matrices were also compared to the three types of antibiotics: ciprofloxacin, bleomycin and cloxacillin using the Minimal Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) tests. Moreover, DNA was isolated from the analysed bacteria which was additionally digested with formamidopyrimidine-DNA glycosylase (Fpg) protein from the group of repair glycosases. These enzymes are markers of modified oxidised bases in nucleic acids produced during oxidative stress in cells. Preliminary cellular studies, MIC and MBC tests and digestion with Fpg protein after modification of bacterial DNA suggest that these compounds may have greater potential as antibacterial agents than the aforementioned antibiotics. The described composites are highly specific for the analysed model Escherichia coli strains and may be used in the future as new substitutes for commonly used antibiotics in clinical and nosocomial infections in the progressing pandemic era. The results show much stronger antibacterial properties of the functionalised membranes on the action of bacterial membranes in comparison to the antibiotics in the Fpg digestion experiment. This is most likely due to the strong induction of oxidative stress in the cell through the breakdown of the analysed bacterial DNA.

Funder

National Science Centre, Poland

Medical University of Białystok, Poland

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3