Interdiction in the Early Folding of the p53 DNA-Binding Domain Leads to Its Amyloid-Like Misfolding

Author:

Bergasa-Caceres FernandoORCID,Rabitz Herschel A.ORCID

Abstract

In this article, we investigate two issues: (a) the initial contact formation events along the folding pathway of the DNA-binding domain of the tumor suppressor protein p53 (core p53); and (b) the intermolecular events leading to its conversion into a prion-like form upon incubation with peptide P8(250-257). In the case of (a), the calculations employ the sequential collapse model (SCM) to identify the segments involved in the initial contact formation events that nucleate the folding pathway. The model predicts that there are several possible initial non-local contacts of comparative stability. The most stable of these possible initial contacts involve the protein segments 159AMAIY163 and 251ILTII255, and it is the only native-like contact. Thus, it is predicted to constitute “Nature’s shortcut” to the native structure of the core domain of p53. In the case of issue (b), these findings are then combined with experimental evidence showing that the incubation of the core domain of p53 with peptide P8(250-257), which is equivalent to the native protein segment 250PILTIITL257, leads to an amyloid conformational transition. It is explained how the SCM predicts that P8(250-257) effectively interdicts in the formation of the most stable possible initial contact and, thereby, disrupts the subsequent normal folding. Interdiction by polymeric P8(250-257) seeds is also studied. It is then hypothesized that enhanced folding through one or several of the less stable contacts could play a role in P8(250-257)-promoted core p53 amyloid misfolding. These findings are compared to previous results obtained for the prion protein. Experiments are proposed to test the hypothesis presented regarding core p53 amyloid misfolding.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3