Chitosan–Surfactant Composite Nanocoatings on Glass and Zinc Surfaces Prepared from Aqueous Solutions

Author:

Márton Péter1ORCID,Áder Liza1,Kemény Dávid Miklós2ORCID,Rácz Adél3ORCID,Kovács Dorina2ORCID,Nagy Norbert3ORCID,Szabó Gabriella Stefánia4ORCID,Hórvölgyi Zoltán1

Affiliation:

1. Centre for Colloid Chemistry, Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary

2. Department of Materials Science and Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary

3. Centre for Energy Research, Institute for Technical Physics and Materials Science, Konkoly Thege Miklós út 29-33, H-1121 Budapest, Hungary

4. Department of Chemistry and Chemical Engineering of Hungarian Line of Study, Universitatea Babes-Bolyai, 11 Arany Janos str., RO-400028 Cluj-Napoca, Romania

Abstract

Hydrophobic coatings from chitosan–surfactant composites (ca. 400 nm thick by UV-Vis spectroscopy) for possible corrosion protection were developed on glass and zinc substrates. The surfactants (sodium dodecyl sulfate, SDS or sodium dodecylbenzenesulfonate, and SDBS) were added to the chitosan by two methods: mixing the surfactants with the aqueous chitosan solutions before film deposition or impregnating the deposited chitosan films with surfactants from their aqueous solutions. For the mixed coatings, it was found that the lower surface tension of solutions (40–45 mN/m) corresponded to more hydrophobic (80–90°) coatings in every case. The hydrophobicity of the impregnated coatings was especially significant (88° for SDS and 100° for SDBS). Atomic force microscopy studies revealed a slight increase in roughness (max 1.005) for the most hydrophobic coatings. The accumulation of surfactants in the layer was only significant (0.8–1.0 sulfur atomic %) in the impregnated samples according to X-ray photoelectron spectroscopy. Polarization and electron impedance spectroscopy tests confirmed better barrier properties for these samples (40–50% pseudo-porosity instead of 94%). The degree of swelling in a water vapor atmosphere was significantly lower in the case of the impregnated coatings (ca. 25%) than that of the native ones (ca. 75%), measured by spectroscopic ellipsometry. Accordingly, good barrier layer properties require advantageous bulk properties in addition to surface hydrophobicity.

Funder

National Research, Development and Innovation Fund of Hungary

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3