Aluminium Drinking Water Treatment Residuals and Their Toxic Impact on Human Health

Author:

Krupińska IzabelaORCID

Abstract

Aluminium exerts undeniable human health effects, so its concentration should be controlled in water treatment plants. The article presents and discusses the results of studies on the influence of selected properties of aluminium coagulants on the concentration of aluminium remaining in the purified water. The coagulants used were classical hydrolysing aluminium salts: aluminium sulphate (VI) and sodium aluminate as well as pre-hydrolysed polyaluminium chlorides: Flokor 105B and PAX XL10 that had different the alkalinity coefficient r = [OH−]/[Al3+]. The Al species distribution in the coagulants samples were analysed by the Ferron complexation timed spectrophotometry. On the basis of their reaction rates with ferron reagent, the aluminium species were divided into three categories: monomeric (Ala), medium polymerised (Alb) and colloidal (Alc). The usefulness of the tested aluminium coagulants due to the concentration of residual aluminium and dissolved aluminium, which is easily assimilated by the human body, was increased according to the following series: sodium aluminate (Ala = 100%, Alb = 0) < aluminium sulphate (VI) (Ala = 91%, Alb = 9%) < PAX XL 10 (Ala = 6%, Alb = 28%, r = 2.10) < Flokor 105B (Ala = 3%, Alb = 54%, r = 2.55).

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference44 articles.

1. Risk of residual aluminum in treated waters with aluminum sulphate;Bachir;Adv. Res.,2016

2. Effect of temperature and pH on the effectiveness of pollutant removal from groundwater in the process of coagulation;Krupińska;Ochrona Środowiska,2015

3. Evaluation of carboxymethylpullulan-AlCl3 as a coagulant for water treatment: A case study with kaolin;Chao;Water Environ. Res.,2019

4. Human health risk associated with the management of phosphorus in freshwaters using lanthanum and aluminium

5. Aluminium-induced synaptic plasticity injury via the PHF8–H3K9me2-BDNF signalling pathway

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3